實時統(tǒng)計每天pv,uv的sparkStreaming結(jié)合redis結(jié)果存入mysql供前端展示
最近有個需求,實時統(tǒng)計pv,uv,結(jié)果按照date,hour,pv,uv來展示,按天統(tǒng)計,第二天重新統(tǒng)計,當然了實際還需要按照類型字段分類統(tǒng)計pv,uv,比如按照date,hour,pv,uv,type來展示。這里介紹最基本的pv,uv的展示。
1、項目流程

日志數(shù)據(jù)從flume采集過來,落到hdfs供其它離線業(yè)務(wù)使用,也會sink到kafka,sparkStreaming從kafka拉數(shù)據(jù)過來,計算pv,uv,uv是用的redis的set集合去重,最后把結(jié)果寫入mysql數(shù)據(jù)庫,供前端展示使用。
2、具體過程
1)pv的計算
拉取數(shù)據(jù)有兩種方式,基于received和direct方式,這里用direct直拉的方式,用的mapWithState算子保存狀態(tài),這個算子與updateStateByKey一樣,并且性能更好。當然了實際中數(shù)據(jù)過來需要經(jīng)過清洗,過濾,才能使用。
定義一個狀態(tài)函數(shù)
這樣就很容易的把pv計算出來了。
2)uv的計算
uv是要全天去重的,每次進來一個batch的數(shù)據(jù),如果用原生的reduceByKey或者groupByKey對配置要求太高,在配置較低情況下,我們申請了一個93G的redis用來去重,原理是每進來一條數(shù)據(jù),將date作為key,guid加入set集合,20秒刷新一次,也就是將set集合的尺寸取出來,更新一下數(shù)據(jù)庫即可。
redis連接池代碼RedisPoolUtil.scala:
3)結(jié)果保存到數(shù)據(jù)庫
結(jié)果保存到mysql,數(shù)據(jù)庫,20秒刷新一次數(shù)據(jù)庫,前端展示刷新一次,就會重新查詢一次數(shù)據(jù)庫,做到實時統(tǒng)計展示pv,uv的目的。
msql 連接池代碼MysqlPoolUtil.scala
4)數(shù)據(jù)容錯
流處理消費kafka都會考慮到數(shù)據(jù)丟失問題,一般可以保存到任何存儲系統(tǒng),包括mysql,hdfs,hbase,redis,zookeeper等到。這里用SparkStreaming自帶的checkpoint機制來實現(xiàn)應(yīng)用重啟時數(shù)據(jù)恢復(fù)。
checkpoint
這里采用的是checkpoint機制,在重啟或者失敗后重啟可以直接讀取上次沒有完成的任務(wù),從kafka對應(yīng)offset讀取數(shù)據(jù)。
checkpoint是每天一個目錄,在第二天凌晨定時銷毀StreamingContext對象,重新統(tǒng)計計算pv,uv。
注意
ssc.stop(false,true)表示優(yōu)雅地銷毀StreamingContext對象,不能銷毀SparkContext對象,ssc.stop(true,true)會停掉SparkContext對象,程序就直接停了。
應(yīng)用遷移或者程序升級
在這個過程中,我們把應(yīng)用升級了一下,比如說某個功能寫的不夠完善,或者有邏輯錯誤,這時候都是需要修改代碼,重新打jar包的,這時候如果把程序停了,新的應(yīng)用還是會讀取老的checkpoint,可能會有兩個問題:
- 執(zhí)行的還是上一次的程序,因為
checkpoint里面也有序列化的代碼;- 直接執(zhí)行失敗,反序列化失敗;
其實有時候,修改代碼后不用刪除checkpoint也是可以直接生效,經(jīng)過很多測試,我發(fā)現(xiàn)如果對數(shù)據(jù)的過濾操作導(dǎo)致數(shù)據(jù)過濾邏輯改變,還有狀態(tài)操作保存修改,也會導(dǎo)致重啟失敗,只有刪除checkpoint才行,可是實際中一旦刪除checkpoint,就會導(dǎo)致上一次未完成的任務(wù)和消費kafka的offset丟失,直接導(dǎo)致數(shù)據(jù)丟失,這種情況下我一般這么做。
這種情況一般是在另外一個集群,或者把
checkpoint目錄修改下,我們是代碼與配置文件分離,所以修改配置文件checkpoint的位置還是很方便的。然后兩個程序一起跑,除了checkpoint目錄不一樣,會重新建,都插入同一個數(shù)據(jù)庫,跑一段時間后,把舊的程序停掉就好。以前看官網(wǎng)這么說,只能記住不能清楚明了,只有自己做時才會想一下辦法去保證數(shù)據(jù)準確。
5)日志
日志用的log4j2,本地保存一份,ERROR級別的日志會通過郵件發(fā)送到郵箱。
3、主要代碼
需要的maven依賴:
讀取配置文件代碼ConfigFactory .java:
主要業(yè)務(wù)代碼,如下:
package com.js.ipflow.flash.helper
import java.sql.Connection
import java.util.{Calendar, Date}
import com.alibaba.fastjson.JSON
import com.js.ipflow.start.ConfigFactory
import com.js.ipflow.utils.{DateUtil, MysqlPoolUtil, RedisPoolUtil}
import kafka.serializer.StringDecoder
import org.apache.logging.log4j.LogManager
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, State, StateSpec, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
import redis.clients.jedis.Jedis
object HelperHandle {
val logger = LogManager.getLogger(HelperHandle.getClass.getSimpleName)
// 郵件level=error日志
val logger2 = LogManager.getLogger("email")
def main(args: Array[String]): Unit = {
helperHandle(args(0))
}
def helperHandle(consumeRate: String): Unit = {
// 初始化配置文件
ConfigFactory.initConfig()
val conf = new SparkConf().setAppName(ConfigFactory.sparkstreamname)
conf.set("spark.streaming.stopGracefullyOnShutdown", "true")
conf.set("spark.streaming.kafka.maxRatePerPartition", consumeRate)
conf.set("spark.default.parallelism", "30")
val sc = new SparkContext(conf)
while (true) {
val ssc = StreamingContext.getOrCreate(ConfigFactory.checkpointdir + DateUtil.getDay(0), getStreamingContext _)
ssc.start()
ssc.awaitTerminationOrTimeout(resetTime)
ssc.stop(false, true)
}
def getStreamingContext(): StreamingContext = {
val stateSpec = StateSpec.function(mapFunction)
val ssc = new StreamingContext(sc, Seconds(ConfigFactory.sparkstreamseconds))
ssc.checkpoint(ConfigFactory.checkpointdir + DateUtil.getDay(0))
val zkQuorm = ConfigFactory.kafkazookeeper
val topics = ConfigFactory.kafkatopic
val topicSet = Set(topics)
val kafkaParams = Map[String, String](
"metadata.broker.list" -> (ConfigFactory.kafkaipport)
, "group.id" -> (ConfigFactory.kafkagroupid)
, "auto.offset.reset" -> kafka.api.OffsetRequest.LargestTimeString
)
val rmessage = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](
ssc, kafkaParams, topicSet
)
// helper數(shù)據(jù) (dateHour,guid,helperversion)
val helper_data = FilterHelper.getHelperData(rmessage.map(x => {
val message = JSON.parseObject(x._2).getString("message")
JSON.parseObject(message)
})).repartition(60).cache()
// (guid, datehour + helperversion)
val helper_data_dis = helper_data.map(x => (x._2, addTab(x._1) + x._3)).reduceByKey((x, y) => y)
// pv,uv
val helper_count = helper_data.map(x => (x._1, 1L)).mapWithState(stateSpec).stateSnapshots().repartition(2)
// helperversion
val helper_helperversion_count = helper_data.map(x => (addTab(x._1) + x._3, 1L)).mapWithState(stateSpec).stateSnapshots().repartition(2)
helper_data_dis.foreachRDD(rdd => {
rdd.foreachPartition(eachPartition => {
var jedis: Jedis = null
try {
jedis = getJedis
eachPartition.foreach(x => {
val arr = x._2.split("\t")
val date: String = arr(0).split(":")(0)
// helper 統(tǒng)計
val key0 = "helper_" + date
jedis.sadd(key0, x._1)
jedis.expire(key0, ConfigFactory.rediskeyexists)
// helperversion 統(tǒng)計
val key = date + "_" + arr(1)
jedis.sadd(key, x._1)
jedis.expire(key, ConfigFactory.rediskeyexists)
})
} catch {
case e: Exception => {
logger.error(e)
logger2.error(HelperHandle.getClass.getSimpleName + e)
}
} finally {
if (jedis != null) {
closeJedis(jedis)
}
}
})
})
insertHelper(helper_helperversion_count, "statistic_realtime_flash_helper", "date", "hour", "count_all", "count", "helperversion", "datehour", "dh")
insertHelper(helper_count, "statistic_realtime_helper_count", "date", "hour", "helper_count_all", "helper_count", "dh")
ssc
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// 計算當前時間距離次日零點的時長(毫秒)
def resetTime = {
val now = new Date()
val todayEnd = Calendar.getInstance
todayEnd.set(Calendar.HOUR_OF_DAY, 23) // Calendar.HOUR 12小時制
todayEnd.set(Calendar.MINUTE, 59)
todayEnd.set(Calendar.SECOND, 59)
todayEnd.set(Calendar.MILLISECOND, 999)
todayEnd.getTimeInMillis - now.getTime
}
/**
* 插入數(shù)據(jù)
*
* @param data (addTab(datehour)+helperversion)
* @param tbName
* @param colNames
*/
def insertHelper(data: DStream[(String, Long)], tbName: String, colNames: String*): Unit = {
data.foreachRDD(rdd => {
val tmp_rdd = rdd.map(x => x._1.substring(11, 13).toInt)
if (!rdd.isEmpty()) {
val hour_now = tmp_rdd.max() // 獲取當前結(jié)果中最大的時間,在數(shù)據(jù)恢復(fù)中可以起作用
rdd.foreachPartition(eachPartition => {
var jedis: Jedis = null
var conn: Connection = null
try {
jedis = getJedis
conn = MysqlPoolUtil.getConnection()
conn.setAutoCommit(false)
val stmt = conn.createStatement()
eachPartition.foreach(x => {
if (colNames.length == 7) {
val datehour = x._1.split("\t")(0)
val helperversion = x._1.split("\t")(1)
val date_hour = datehour.split(":")
val date = date_hour(0)
val hour = date_hour(1).toInt
val colName0 = colNames(0) // date
val colName1 = colNames(1) // hour
val colName2 = colNames(2) // count_all
val colName3 = colNames(3) // count
val colName4 = colNames(4) // helperversion
val colName5 = colNames(5) // datehour
val colName6 = colNames(6) // dh
val colValue0 = addYin(date)
val colValue1 = hour
val colValue2 = x._2.toInt
val colValue3 = jedis.scard(date + "_" + helperversion) // // 2018-07-08_10.0.1.22
val colValue4 = addYin(helperversion)
var colValue5 = if (hour < 10) "'" + date + " 0" + hour + ":00 " + helperversion + "'" else "'" + date + " " + hour + ":00 " + helperversion + "'"
val colValue6 = if (hour < 10) "'" + date + " 0" + hour + ":00'" else "'" + date + " " + hour + ":00'"
var sql = ""
if (hour == hour_now) { // uv只對現(xiàn)在更新
sql = s"insert into ${tbName}(${colName0},${colName1},${colName2},${colName3},${colName4},${colName5},${colName6}) values(${colValue0},${colValue1},${colValue2},${colValue3},${colValue4},${colValue5},${colValue6}) on duplicate key update ${colName2} = ${colValue2},${colName3} = ${colValue3}"
logger.warn(sql)
stmt.addBatch(sql)
} /* else {
sql = s"insert into ${tbName}(${colName0},${colName1},${colName2},${colName4},${colName5},${colName6}) values(${colValue0},${colValue1},${colValue2},${colValue4},${colValue5},${colValue6}) on duplicate key update ${colName2} = ${colValue2}"
}*/
} else if (colNames.length == 5) {
val date_hour = x._1.split(":")
val date = date_hour(0)
val hour = date_hour(1).toInt
val colName0 = colNames(0) // date
val colName1 = colNames(1) // hour
val colName2 = colNames(2) // helper_count_all
val colName3 = colNames(3) // helper_count
val colName4 = colNames(4) // dh
val colValue0 = addYin(date)
val colValue1 = hour
val colValue2 = x._2.toInt
val colValue3 = jedis.scard("helper_" + date) // // helper_2018-07-08
val colValue4 = if (hour < 10) "'" + date + " 0" + hour + ":00'" else "'" + date + " " + hour + ":00'"
var sql = ""
if (hour == hour_now) { // uv只對現(xiàn)在更新
sql = s"insert into ${tbName}(${colName0},${colName1},${colName2},${colName3},${colName4}) values(${colValue0},${colValue1},${colValue2},${colValue3},${colValue4}) on duplicate key update ${colName2} = ${colValue2},${colName3} = ${colValue3}"
logger.warn(sql)
stmt.addBatch(sql)
}
}
})
stmt.executeBatch() // 批量執(zhí)行sql語句
conn.commit()
} catch {
case e: Exception => {
logger.error(e)
logger2.error(HelperHandle.getClass.getSimpleName + e)
}
} finally {
if (jedis != null) {
closeJedis(jedis)
}
if(conn != null){
conn.close()
}
}
})
}
})
}
def addYin(str: String): String = {
"'" + str + "'"
}
// 字符串添加tab格式化方法
def addTab(str: String): String = {
str + "\t";
}
// 實時流量狀態(tài)更新函數(shù)
val mapFunction = (datehour: String, pv: Option[Long], state: State[Long]) => {
val accuSum = pv.getOrElse(0L) + state.getOption().getOrElse(0L)
val output = (datehour, accuSum)
state.update(accuSum)
output
}
// 獲取jedis連接
def getJedis: Jedis = {
val jedis = RedisPoolUtil.getPool.getResource
jedis
}
// 釋放jedis連接
def closeJedis(jedis: Jedis): Unit = {
RedisPoolUtil.getPool.returnResource(jedis)
}
}作者:柯廣的網(wǎng)絡(luò)日志
微信公眾號:Java大數(shù)據(jù)與數(shù)據(jù)倉庫


個人中心
退出



分類導(dǎo)航