Hive中的集合數(shù)據(jù)類型
Hive系列文章
- Hive表的基本操作
- Hive中的集合數(shù)據(jù)類型
- Hive動(dòng)態(tài)分區(qū)詳解
- hive中orc格式表的數(shù)據(jù)導(dǎo)入
- Java通過jdbc連接hive
- 通過HiveServer2訪問Hive
- SpringBoot連接Hive實(shí)現(xiàn)自助取數(shù)
- hive關(guān)聯(lián)hbase表
- Hive udf 使用方法
- Hive基于UDF進(jìn)行文本分詞
- Hive窗口函數(shù)row number的用法
- 數(shù)據(jù)倉(cāng)庫(kù)之拉鏈表
除了使用礎(chǔ)的數(shù)據(jù)類型string
等,Hive中的列支持使用struct, map, array集合數(shù)據(jù)類型。
1. Array的使用
創(chuàng)建數(shù)據(jù)庫(kù)表,以array作為數(shù)據(jù)類型
數(shù)據(jù)
biansutao beijing,shanghai,tianjin,hangzhou
linan changchu,chengdu,wuhan
入庫(kù)數(shù)據(jù)
查詢
hive> select * from person;
biansutao ["beijing","shanghai","tianjin","hangzhou"]
linan ["changchu","chengdu","wuhan"]
Time taken: 0.355 seconds
hive> select name from person;
linan
biansutao
Time taken: 12.397 seconds
hive> select work_locations[0] from person;
changchu
beijing
Time taken: 13.214 seconds
hive> select work_locations from person;
["changchu","chengdu","wuhan"]
["beijing","shanghai","tianjin","hangzhou"]
Time taken: 13.755 seconds
hive> select work_locations[3] from person;
NULL
hangzhou
Time taken: 12.722 seconds
hive> select work_locations[4] from person;
NULL
NULL
Time taken: 15.958 seconds
2. Map 的使用
創(chuàng)建數(shù)據(jù)庫(kù)表
要入庫(kù)的數(shù)據(jù)
biansutao '數(shù)學(xué)':80,'語(yǔ)文':89,'英語(yǔ)':95
jobs '語(yǔ)文':60,'數(shù)學(xué)':80,'英語(yǔ)':99
入庫(kù)數(shù)據(jù)
查詢
hive> select * from score;
biansutao {"數(shù)學(xué)":80,"語(yǔ)文":89,"英語(yǔ)":95}
jobs {"語(yǔ)文":60,"數(shù)學(xué)":80,"英語(yǔ)":99}
Time taken: 0.665 seconds
hive> select name from score;
jobs
biansutao
Time taken: 19.778 seconds
hive> select t.score from score t;
{"語(yǔ)文":60,"數(shù)學(xué)":80,"英語(yǔ)":99}
{"數(shù)學(xué)":80,"語(yǔ)文":89,"英語(yǔ)":95}
Time taken: 19.353 seconds
hive> select t.score['語(yǔ)文'] from score t;
60
89
Time taken: 13.054 seconds
hive> select t.score['英語(yǔ)'] from score t;
99
95
Time taken: 13.769 seconds
修改map字段的分隔符
Storage Desc Params:
colelction.delim ##
field.delim \t
mapkey.delim =
serialization.format \t
可以通過desc formatted tableName
查看表的屬性。
hive-2.1.1中,可以看出colelction.delim
,這里是colelction而不是collection,hive里面這個(gè)單詞寫錯(cuò)了,所以還是要按照錯(cuò)誤的來(lái)。
3. Struct 的使用
創(chuàng)建數(shù)據(jù)表
數(shù)據(jù)
1 english,80
2 math,89
3 chinese,95
入庫(kù)
查詢
hive> select * from test;
OK
1 {"course":"english","score":80}
2 {"course":"math","score":89}
3 {"course":"chinese","score":95}
Time taken: 0.275 seconds
hive> select course from test;
{"course":"english","score":80}
{"course":"math","score":89}
{"course":"chinese","score":95}
Time taken: 44.968 seconds
select t.course.course from test t;
english
math
chinese
Time taken: 15.827 seconds
hive> select t.course.score from test t;
80
89
95
Time taken: 13.235 seconds
4. 不支持組合的復(fù)雜數(shù)據(jù)類型
我們有時(shí)候可能想建一個(gè)復(fù)雜的數(shù)據(jù)集合類型,比如下面的a字段,本身是一個(gè)Map,它的key是string類型的,value是Array集合類型的。
建表
導(dǎo)入數(shù)據(jù)
1 english:80,90,70
2 math:89,78,86
3 chinese:99,100,82
LOAD DATA LOCAL INPATH '/home/hadoop/test1.txt' OVERWRITE INTO TABLE test1;
這里查詢出數(shù)據(jù):
可以看到,已經(jīng)出問題了,我們意圖是想"english":["80", "90", "70"],實(shí)際上把90和70也當(dāng)作Map的key了,value值都是空的。分析一下我們的建表語(yǔ)句,collection items terminated by ','
制定了集合類型(map, struct, array)數(shù)據(jù)元素之間分隔符是", ",實(shí)際上map也是屬于集合的,那么也會(huì)按照逗號(hào)分出3個(gè)key-value對(duì);由于MAP KEYS TERMINATED BY ':'
定義了map中key-value的分隔符是":",第一個(gè)“english”可以準(zhǔn)確識(shí)別,后面的直接把value置為"null"了。
作者:柯廣的網(wǎng)絡(luò)日志
微信公眾號(hào):Java大數(shù)據(jù)與數(shù)據(jù)倉(cāng)庫(kù)