R語言里面的因子

R語言中的因子確實不好理解,很多人都這么覺得。在R語言中,因子(factor)表示的是一個符號、一個編號或者一個等級,即,一個點。例如,人的個數(shù)可以是1,2,3,4......那么因子就包括,1,2,3,4.....還有統(tǒng)計量的水平的時候用到的高、中、低,也是因子,因為他是一個點。與之區(qū)別的向量,是一個連續(xù)性的值,例如,數(shù)值中有1,1.1,1.2......可以作為數(shù)值來計算,而因子則不可以。如果用我自己的理解,簡單通俗來講:因子是一個點,向量是一個有方向的范圍。在R中,如果把數(shù)字作為因子,那么在導(dǎo)入數(shù)據(jù)之后,需要將向量轉(zhuǎn)換為因子(factor),而因子在整個計算過程中不再作為數(shù)值,而是一個"符號"而已。因子的水平就是因子的所有不相同的符號的集合。
創(chuàng)建因子的函數(shù)介紹如下:

factor(x, levels = sort(unique(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

levels 用來指定因子可能的水平(缺省值是向量x中互異的值);labels
用來指定水平的名字;exclude表示從向量x中剔除的水平值;ordered是
一個邏輯型選項用來指定因子的水平是否有次序?;叵霐?shù)值型或字符型
的x。

> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:5)
[1] 1 2 3
Levels: 1 2 3 4 5
> factor(1:3, labels=c("A", "B", "C"))
[1] A B C
Levels: A B C
> factor(1:5, exclude=4)
[1] 1 2 3 NA 5
Levels: 1 2 3 5

函數(shù)levels用來提取一個因子中可能的水平值:

> f <- factor(c(2, 4), levels=2:5) > f
[1] 2 4
Levels: 2 3 4 5
> levels(f)
[1] "2" "3" "4" "5"

因子用來存儲類別變量(categorical variables)和有序變量,這類變量不能用來計算而只能用來分類或者計數(shù)。因子表示分類變量,有序因子表示有序變量。生成因子數(shù)據(jù)對象的函數(shù)是factor(),語法是factor(data, levels, labels, ...),其中data是數(shù)據(jù),levels是因子水平向量,labels是因子的標簽向量。
1、創(chuàng)建一個因子。
例1:

>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y') 
>col <- factor(colour) 
>col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的內(nèi)容替換colour相應(yīng)位置對應(yīng)levels的內(nèi)容 
>col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3')) 
>col_vec <- as.vector(col2) #轉(zhuǎn)換成字符向量 
>col_num <- as.numeric(col2) #轉(zhuǎn)換成數(shù)字向量 
>col3 <- factor(colour, levels = c('G', 'R'))

2、創(chuàng)建一個有序因子。
例1:

>score <- c('A', 'B', 'A', 'C', 'B') 
>score1 <- ordered(score, levels = c('C', 'B', 'A')); 
>score1
[1] A B A C B
Levels: C < B < A

3、用cut()函數(shù)將一般的數(shù)據(jù)轉(zhuǎn)換成因子或有序因子。
例1:

>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98, 65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88) 
>exam1 <- cut(exam, breaks = 3) #切分成3組 >exam1
[1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82]
[10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82]
[19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82]
[28] (82,98] (50,66] (82,98]
Levels: (50,66] (66,82] (82,98]
>exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己設(shè)置的組 
> exam2
[1] (89,100] (89,100] (0,59]   (79,89]  (79,89]  (69,79]  (89,100] (89,100]
[9] (69,79]  (69,79]  (69,79]  (59,69]  (89,100] (69,79]  (89,100] (59,69]
[17] (69,79]  (69,79]  (0,59]   (0,59]   (59,69]  (59,69]  (79,89]  (79,89]
[25] (89,100] (69,79]  (69,79]  (89,100] (0,59]   (79,89]
Levels: (0,59] (59,69] (69,79] (79,89] (89,100]
>attr(exam1, 'levels');
[1] "(50,66]" "(66,82]" "(82,98]"
>attr(exam2, 'levels');
[1] "(0,59]"   "(59,69]"  "(69,79]"  "(79,89]"  "(89,100]"
>attr(exam2, 'class')
[1] "factor"
#一個有序因子
> x <- factor(rep(1:5,3)) 
> ordered(x,labels = c('a1','a2','a3','a4','a5'))
[1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5
Levels: a1 < a2 < a3 < a4 < a5

關(guān)于因子就說到這里,實際用的非常少!對于邏輯數(shù)據(jù)以后會遇到再說,就不專門講了。





作者:柯廣的網(wǎng)絡(luò)日志

微信公眾號:Java大數(shù)據(jù)與數(shù)據(jù)倉庫