R語言里面的因子
R語言中的因子確實(shí)不好理解,很多人都這么覺得。在R語言中,因子(factor)表示的是一個(gè)符號(hào)、一個(gè)編號(hào)或者一個(gè)等級(jí),即,一個(gè)點(diǎn)。例如,人的個(gè)數(shù)可以是1,2,3,4......那么因子就包括,1,2,3,4.....還有統(tǒng)計(jì)量的水平的時(shí)候用到的高、中、低,也是因子,因?yàn)樗且粋€(gè)點(diǎn)。與之區(qū)別的向量,是一個(gè)連續(xù)性的值,例如,數(shù)值中有1,1.1,1.2......可以作為數(shù)值來計(jì)算,而因子則不可以。如果用我自己的理解,簡(jiǎn)單通俗來講:因子是一個(gè)點(diǎn),向量是一個(gè)有方向的范圍。在R中,如果把數(shù)字作為因子,那么在導(dǎo)入數(shù)據(jù)之后,需要將向量轉(zhuǎn)換為因子(factor),而因子在整個(gè)計(jì)算過程中不再作為數(shù)值,而是一個(gè)"符號(hào)"而已。因子的水平就是因子的所有不相同的符號(hào)的集合。
創(chuàng)建因子的函數(shù)介紹如下:
factor(x, levels = sort(unique(x), na.last = TRUE), labels = levels, exclude = NA, ordered = is.ordered(x))
levels 用來指定因子可能的水平(缺省值是向量x中互異的值);labels
用來指定水平的名字;exclude表示從向量x中剔除的水平值;ordered是
一個(gè)邏輯型選項(xiàng)用來指定因子的水平是否有次序?;叵霐?shù)值型或字符型
的x。
> factor(1:3) [1] 1 2 3 Levels: 1 2 3 > factor(1:3, levels=1:5) [1] 1 2 3 Levels: 1 2 3 4 5 > factor(1:3, labels=c("A", "B", "C")) [1] A B C Levels: A B C > factor(1:5, exclude=4) [1] 1 2 3 NA 5 Levels: 1 2 3 5
函數(shù)levels用來提取一個(gè)因子中可能的水平值:
> f <- factor(c(2, 4), levels=2:5) > f [1] 2 4 Levels: 2 3 4 5 > levels(f) [1] "2" "3" "4" "5"
因子用來存儲(chǔ)類別變量(categorical
variables)和有序變量,這類變量不能用來計(jì)算而只能用來分類或者計(jì)數(shù)。因子表示分類變量,有序因子表示有序變量。生成因子數(shù)據(jù)對(duì)象的函數(shù)是factor(),語法是factor(data,
levels, labels, ...),其中data是數(shù)據(jù),levels是因子水平向量,labels是因子的標(biāo)簽向量。
1、創(chuàng)建一個(gè)因子。
例1:
>colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y') >col <- factor(colour) >col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow')) #labels的內(nèi)容替換colour相應(yīng)位置對(duì)應(yīng)levels的內(nèi)容 >col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3')) >col_vec <- as.vector(col2) #轉(zhuǎn)換成字符向量 >col_num <- as.numeric(col2) #轉(zhuǎn)換成數(shù)字向量 >col3 <- factor(colour, levels = c('G', 'R'))
2、創(chuàng)建一個(gè)有序因子。
例1:
>score <- c('A', 'B', 'A', 'C', 'B') >score1 <- ordered(score, levels = c('C', 'B', 'A')); >score1 [1] A B A C B Levels: C < B < A
3、用cut()函數(shù)將一般的數(shù)據(jù)轉(zhuǎn)換成因子或有序因子。
例1:
>exam <- c(98, 97, 52, 88, 85, 75, 97, 92, 77, 74, 70, 63, 97, 71, 98, 65, 79, 74, 58, 59, 60, 63, 87, 82, 95, 75, 79, 96, 50, 88) >exam1 <- cut(exam, breaks = 3) #切分成3組 >exam1 [1] (82,98] (82,98] (50,66] (82,98] (82,98] (66,82] (82,98] (82,98] (66,82] [10] (66,82] (66,82] (50,66] (82,98] (66,82] (82,98] (50,66] (66,82] (66,82] [19] (50,66] (50,66] (50,66] (50,66] (82,98] (66,82] (82,98] (66,82] (66,82] [28] (82,98] (50,66] (82,98] Levels: (50,66] (66,82] (82,98] >exam2 <- cut(exam, breaks = c(0, 59, 69, 79, 89, 100)) #切分成自己設(shè)置的組 > exam2 [1] (89,100] (89,100] (0,59] (79,89] (79,89] (69,79] (89,100] (89,100] [9] (69,79] (69,79] (69,79] (59,69] (89,100] (69,79] (89,100] (59,69] [17] (69,79] (69,79] (0,59] (0,59] (59,69] (59,69] (79,89] (79,89] [25] (89,100] (69,79] (69,79] (89,100] (0,59] (79,89] Levels: (0,59] (59,69] (69,79] (79,89] (89,100] >attr(exam1, 'levels'); [1] "(50,66]" "(66,82]" "(82,98]" >attr(exam2, 'levels'); [1] "(0,59]" "(59,69]" "(69,79]" "(79,89]" "(89,100]" >attr(exam2, 'class') [1] "factor" #一個(gè)有序因子 > x <- factor(rep(1:5,3)) > ordered(x,labels = c('a1','a2','a3','a4','a5')) [1] a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 a1 a2 a3 a4 a5 Levels: a1 < a2 < a3 < a4 < a5
關(guān)于因子就說到這里,實(shí)際用的非常少!對(duì)于邏輯數(shù)據(jù)以后會(huì)遇到再說,就不專門講了。
作者:柯廣的網(wǎng)絡(luò)日志
微信公眾號(hào):Java大數(shù)據(jù)與數(shù)據(jù)倉庫