SpringBoot 中使用布隆過濾器 Guava、Redission實(shí)現(xiàn)
前言
今天說到的實(shí)現(xiàn)方式有以下幾種:
引入 Guava 實(shí)現(xiàn)
引入 hutool 實(shí)現(xiàn)
引入 Redission 實(shí)現(xiàn)
Guava 布隆過濾器結(jié)合 Redis (重點(diǎn))
項(xiàng)目工程的搭建,就在這里先寫明啦~
boot項(xiàng)目就是四步走~ 導(dǎo)包->寫配置->編寫配置類->使用
補(bǔ)充說明:我使用的 redis 是用docker下載的一個(gè)集成redis和布隆過濾器的鏡像。安裝方式:Docker安裝Redis布隆過濾器
如果你是在windows上安裝的redis 是3.0版本的,是無法集成布隆過濾器。
如果是在liunx版本上的redis,需要再額外下載一個(gè)布隆過濾器的模塊。需要自行百度啦~
我將要用到的所有jar都放在這里啦~
<parent> <artifactId>spring-boot-dependencies</artifactId> <groupId>org.springframework.boot</groupId> <version>2.5.2</version> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <!-- https://mvnrepository.com/artifact/org.redisson/redisson-spring-boot-starter --> <dependency> <groupId>org.redisson</groupId> <artifactId>redisson-spring-boot-starter</artifactId> <version>3.17.6</version> </dependency>
<dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>30.0-jre</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> </dependency> <dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.22</version> </dependency> </dependencies> 復(fù)制代碼
yml 配置文件:
server: port: 8081 spring: redis: port: 6379 host: 192.xxx復(fù)制代碼
一、Guava 實(shí)現(xiàn)布隆過濾器
這個(gè)方式非??旖荩?br>
直接用一個(gè)Demo來說明吧
@Test
public void test2() {
// 預(yù)期插入數(shù)量
long capacity = 10000L; // 錯(cuò)誤比率
double errorRate = 0.01; //創(chuàng)建BloomFilter對(duì)象,需要傳入Funnel對(duì)象,預(yù)估的元素個(gè)數(shù),錯(cuò)誤率
BloomFilter<Long> filter = BloomFilter.create(Funnels.longFunnel(), capacity, errorRate); // BloomFilter<String> filter = BloomFilter.create(Funnels.stringFunnel(Charset.forName("utf-8")), 10000, 0.0001); //put值進(jìn)去
for (long i = 0; i < capacity; i++) { filter.put(i); }
// 統(tǒng)計(jì)誤判次數(shù)
int count = 0; // 我在數(shù)據(jù)范圍之外的數(shù)據(jù),測(cè)試相同量的數(shù)據(jù),判斷錯(cuò)誤率是不是符合我們當(dāng)時(shí)設(shè)定的錯(cuò)誤率
for (long i = capacity; i < capacity * 2; i++) { if (filter.mightContain(i)) {
count++; }
}
System.out.println(count); }
復(fù)制代碼
當(dāng)容量為1k,誤判率為 0.01時(shí)
2022-08-26 23:50:01.028 INFO 14748 --- [ main] com.nzc.test.RedisBloomFilterTest : 存入元素為==1000
誤判個(gè)數(shù)為==>10復(fù)制代碼
當(dāng)容量為1w,誤判率為 0.01時(shí)
2022-08-26 23:49:23.618 INFO 21796 --- [ main] com.nzc.test.RedisBloomFilterTest : 存入元素為==10000
誤判個(gè)數(shù)為==>87
復(fù)制代碼
當(dāng)容量為100w,誤判率為 0.01時(shí)
2022-08-26 23:50:45.167 INFO 8964 --- [ main] com.nzc.test.RedisBloomFilterTest : 存入元素為==1000000 誤判個(gè)數(shù)為==>9946復(fù)制代碼
BloomFilter<Long> filter = BloomFilter.create(Funnels.longFunnel(), capacity, errorRate);
create方法實(shí)際上調(diào)用的方法是:
public static <T> BloomFilter<T> create(
Funnel<? super T> funnel, int expectedInsertions, double fpp) {
return create(funnel, (long) expectedInsertions, fpp);
}復(fù)制代碼
funnel 用來對(duì)參數(shù)做轉(zhuǎn)化,方便生成hash值
expectedInsertions 預(yù)期插入的數(shù)據(jù)量大小
fpp 誤判率
里面具體的實(shí)現(xiàn),相對(duì)我來說,數(shù)學(xué)能力有限,沒法說清楚。希望大家多多包含。
二、Hutool 布隆過濾器
Hutool 工具中的布隆過濾器,內(nèi)存占用太高了,并且功能相比于guava也弱了很多,個(gè)人不建議使用。
@Test
public void test4(){
int capacity = 100; // 錯(cuò)誤比率
double errorRate = 0.01; // 初始化
BitMapBloomFilter filter = new BitMapBloomFilter(capacity); for (int i = 0; i < capacity; i++) { filter.add(String.valueOf(i)); }
log.info("存入元素為=={}",capacity); // 統(tǒng)計(jì)誤判次數(shù)
int count = 0; // 我在數(shù)據(jù)范圍之外的數(shù)據(jù),測(cè)試相同量的數(shù)據(jù),判斷錯(cuò)誤率是不是符合我們當(dāng)時(shí)設(shè)定的錯(cuò)誤率
for (int i = capacity; i < capacity * 2; i++) { if (filter.contains(String.valueOf(i))) {
count++; }
}
log.info("誤判元素為==={}",count); }
三、Redission 布隆過濾器
redission的使用其實(shí)也很簡(jiǎn)單,官方也有非常好的教程。
引入jar,然后編寫一個(gè)config類即可
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- https://mvnrepository.com/artifact/org.redisson/redisson-spring-boot-starter -->
<dependency>
<groupId>org.redisson</groupId>
<artifactId>redisson-spring-boot-starter</artifactId>
<version>3.17.6</version>
</dependency>
出了注入 redissionclient,還注入了一些redis相關(guān)的東西,都是歷史包裹~
/**
* @description:
* @date: 2022年08月26日 22:06
*/ @Configuration @EnableCaching public class RedisConfig {
@Bean public RedissonClient redissonClient(){
Config config = new Config();
config.useSingleServer().setAddress("redis://47.113.227.254:6379");
RedissonClient redissonClient = Redisson.create(config);
return redissonClient;
}
@Bean public CacheManager cacheManager(RedisConnectionFactory connectionFactory) {
RedisCacheManager rcm=RedisCacheManager.create(connectionFactory);
return rcm;
}
@Bean public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
redisTemplate.setConnectionFactory(factory);
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
jackson2JsonRedisSerializer.setObjectMapper(om);
//序列化設(shè)置 ,這樣計(jì)算是正常顯示的數(shù)據(jù),也能正常存儲(chǔ)和獲取 redisTemplate.setKeySerializer(jackson2JsonRedisSerializer);
redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer);
redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
return redisTemplate;
}
@Bean public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory factory) {
StringRedisTemplate stringRedisTemplate = new StringRedisTemplate();
stringRedisTemplate.setConnectionFactory(factory);
return stringRedisTemplate;
}
}
我們?cè)谥虚g再編寫一個(gè)Service,
@Service public class BloomFilterService {
@Autowired private RedissonClient redissonClient;
/**
* 創(chuàng)建布隆過濾器
* @param filterName 布隆過濾器名稱
* @param capacity 預(yù)測(cè)插入數(shù)量
* @param errorRate 誤判率
* @param <T>
* @return */ public <T> RBloomFilter<T> create(String filterName, long capacity, double errorRate) {
RBloomFilter<T> bloomFilter = redissonClient.getBloomFilter(filterName);
bloomFilter.tryInit(capacity, errorRate);
return bloomFilter;
}
}
測(cè)試:
package com.nzc.test;
import com.nzc.WebApplication;
import com.nzc.service.BloomFilterService;
import lombok.extern.slf4j.Slf4j;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.redisson.api.RBloomFilter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest(classes = WebApplication.class)
public class BloomFilterTest {
@Autowired
private BloomFilterService bloomFilterService;
@Test
public void testBloomFilter() {
// 預(yù)期插入數(shù)量
long expectedInsertions = 1000L; // 錯(cuò)誤比率
double falseProbability = 0.01; RBloomFilter<Long> bloomFilter = bloomFilterService.create("NZC:BOOM-FILTER", expectedInsertions, falseProbability); // 布隆過濾器增加元素
for (long i = 0; i < expectedInsertions; i++) { bloomFilter.add(i); }
long elementCount = bloomFilter.count(); log.info("布隆過濾器中含有元素個(gè)數(shù) = {}.", elementCount);
// 統(tǒng)計(jì)誤判次數(shù)
int count = 0; // 我在數(shù)據(jù)范圍之外的數(shù)據(jù),測(cè)試相同量的數(shù)據(jù),判斷錯(cuò)誤率是不是符合我們當(dāng)時(shí)設(shè)定的錯(cuò)誤率
for (long i = expectedInsertions; i < expectedInsertions * 2; i++) { if (bloomFilter.contains(i)) {
count++; }
}
log.info("誤判次數(shù) = {}.", count);
// 清空布隆過濾器 內(nèi)部實(shí)現(xiàn)是個(gè)異步線程在執(zhí)行 我只是為了方便測(cè)試
bloomFilter.delete(); }
}
當(dāng)容量為1k,誤判率為0.01時(shí)的輸出情況
2022-08-26 23:37:04.903 INFO 1472 --- [ main] com.nzc.test.BloomFilterTest : 布隆過濾器中含有元素個(gè)數(shù) = 993. 2022-08-26 23:37:38.549 INFO 1472 --- [ main] com.nzc.test.BloomFilterTest : 誤判次數(shù) = 36.
當(dāng)容量為1w,誤判率為0.01時(shí)的輸出情況
2022-08-26 23:50:54.478 INFO 17088 --- [ main] com.nzc.test.BloomFilterTest : 布隆過濾器中含有元素個(gè)數(shù) = 9895. 2022-08-26 23:56:56.171 INFO 17088 --- [ main] com.nzc.test.BloomFilterTest : 誤判次數(shù) = 259.
四、小結(jié)
我實(shí)際測(cè)試的時(shí)候,Guava 的效果應(yīng)該是最好的,Redission 雖然是直接集成了Redis,但實(shí)際效果比起Guava較差一些,我這里沒有貼上時(shí)間,Redission所創(chuàng)建出來的布隆過濾器,速度較慢。
當(dāng)然我的測(cè)試范圍是有限的,并且只是循環(huán)測(cè)試,另外服務(wù)器也并非在本地,這都有影響。
但是僅目前看來是這樣的。
還有就是將 Guava 結(jié)合 Redis 一起使用。
五、Guava 布隆過濾器結(jié)合 Redis 使用
僅限于測(cè)試,一切效果還是需看實(shí)測(cè)。
我是以 Guava 中創(chuàng)建 布隆過濾器為基礎(chǔ),利用它構(gòu)造的方法,來進(jìn)行修改,功能相比于 guava 還是少了很多的。
package com.nzc.boom;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Preconditions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;
import com.google.common.primitives.Longs;
public class BloomFilterHelper<T> {
private int numHashFunctions;
private int bitSize;
private Funnel<T> funnel;
public BloomFilterHelper(Funnel<T> funnel, int expectedInsertions, double fpp) {
Preconditions.checkArgument(funnel != null, "funnel不能為空"); this.funnel = funnel; // 計(jì)算bit數(shù)組長(zhǎng)度
bitSize = optimalNumOfBits(expectedInsertions, fpp); // 計(jì)算hash方法執(zhí)行次數(shù)
numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize); }
/** 源碼
*public <T> boolean mightContain(
* T object, Funnel<? super T> funnel, int numHashFunctions, LockFreeBitArray bits) {
* long bitSize = bits.bitSize(); * byte[] bytes = Hashing.murmur3_128().hashObject(object, funnel).getBytesInternal(); * long hash1 = lowerEight(bytes); * long hash2 = upperEight(bytes); *
* long combinedHash = hash1; * for (int i = 0; i < numHashFunctions; i++) { * // Make the combined hash positive and indexable
* if (!bits.get((combinedHash & Long.MAX_VALUE) % bitSize)) {
* return false; * }
* combinedHash += hash2; * }
* return true; * }
* @param value
* @return
*/
public long[] murmurHashOffset(T value) {
long[] offset = new long[numHashFunctions]; byte[] bytes = Hashing.murmur3_128().hashObject(value, funnel).asBytes(); long hash1 = lowerEight(bytes); long hash2 = upperEight(bytes); long combinedHash = hash1; for (int i = 1; i <= numHashFunctions; i++) { long nextHash = hash1 + i * hash2; if (nextHash < 0) {
nextHash = ~nextHash; }
offset[i - 1] = nextHash % bitSize; }
return offset;
}
private /* static */ long lowerEight(byte[] bytes) {
return Longs.fromBytes(
bytes[7], bytes[6], bytes[5], bytes[4], bytes[3], bytes[2], bytes[1], bytes[0]); }
private /* static */ long upperEight(byte[] bytes) {
return Longs.fromBytes(
bytes[15], bytes[14], bytes[13], bytes[12], bytes[11], bytes[10], bytes[9], bytes[8]); }
/**
* 計(jì)算bit數(shù)組長(zhǎng)度
* 同樣是guava創(chuàng)建布隆過濾器中的計(jì)算bit數(shù)組長(zhǎng)度方法
*/
private int optimalNumOfBits(long n, double p) {
if (p == 0) {
// 設(shè)定最小期望長(zhǎng)度
p = Double.MIN_VALUE; }
return (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2))); }
/**
* 這里是從guava 中 copy 出來的
* 就是guava 創(chuàng)建一個(gè) 布隆過濾器時(shí),
* 計(jì)算hash方法執(zhí)行次數(shù)的方法
*/
private int optimalNumOfHashFunctions(long n, long m) {
int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2))); return countOfHash; }
}
以上的這些代碼,在guava包都可以找到的。
在redisConfig中注入布隆過濾器
/**
* @description:
* @date: 2022年08月26日 22:06
*/ @Configuration @EnableCaching public class RedisConfig {
@Bean public CacheManager cacheManager(RedisConnectionFactory connectionFactory) {
RedisCacheManager rcm=RedisCacheManager.create(connectionFactory);
return rcm;
}
@Bean public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
redisTemplate.setConnectionFactory(factory);
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
jackson2JsonRedisSerializer.setObjectMapper(om);
//序列化設(shè)置 ,這樣計(jì)算是正常顯示的數(shù)據(jù),也能正常存儲(chǔ)和獲取 redisTemplate.setKeySerializer(jackson2JsonRedisSerializer);
redisTemplate.setValueSerializer(jackson2JsonRedisSerializer);
redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer);
redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer);
return redisTemplate;
}
@Bean public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory factory) {
StringRedisTemplate stringRedisTemplate = new StringRedisTemplate();
stringRedisTemplate.setConnectionFactory(factory);
return stringRedisTemplate;
}
//初始化布隆過濾器,放入到spring容器里面 @Bean public BloomFilterHelper<String> initBloomFilterHelper() {
return new BloomFilterHelper<String>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8), 1000, 0.01);
}
@Bean public BloomFilterHelper<Long> initLongBloomFilterHelper() {
return new BloomFilterHelper<Long>((Funnel<Long>) (from, into) -> into.putLong(from),1000, 0.01);
}
}
也就是注入我們剛剛編寫的那個(gè)布隆過濾器。
然后再編寫一個(gè)Service 層
/**
* @description:
*/ @Slf4j @Service public class RedisBloomFilter {
@Autowired private RedisTemplate redisTemplate;
/**
* 根據(jù)給定的布隆過濾器添加值
*/ public <T> void addByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) {
Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能為空");
long[] offset = bloomFilterHelper.murmurHashOffset(value);
for (long i : offset) {
log.info("key :{} ,value : {}", key, i);
redisTemplate.opsForValue().setBit(key, i, true);
}
}
/**
* 根據(jù)給定的布隆過濾器判斷值是否存在
*/ public <T> boolean includeByBloomFilter(BloomFilterHelper<T> bloomFilterHelper, String key, T value) {
Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能為空");
long[] offset = bloomFilterHelper.murmurHashOffset(value);
for (long i : offset) {
log.info("key :{} ,value : {}", key, i);
if (!redisTemplate.opsForValue().getBit(key, i)) {
return false;
}
}
return true;
}
}
測(cè)試:
@Test
public void test1() {
// 預(yù)期插入數(shù)量
long capacity = 1000L; // 錯(cuò)誤比率
double errorRate = 0.01; for (long i = 0; i < capacity; i++) { redisBloomFilter.addByBloomFilter(bloomFilterHelper, "nzc:bloomFilter1", i); }
log.info("存入元素為=={}", capacity); // 統(tǒng)計(jì)誤判次數(shù)
int count = 0; // 我在數(shù)據(jù)范圍之外的數(shù)據(jù),測(cè)試相同量的數(shù)據(jù),判斷錯(cuò)誤率是不是符合我們當(dāng)時(shí)設(shè)定的錯(cuò)誤率
for (long i = capacity; i < capacity * 2; i++) { if (redisBloomFilter.includeByBloomFilter(bloomFilterHelper, "nzc:bloomFilter1", i)) {
count++; }
}
System.out.println("誤判個(gè)數(shù)為==>" + count); }
輸出:
存入元素為==1000 誤判個(gè)數(shù)為==>12
作者:碼出宇宙
歡迎關(guān)注微信公眾號(hào) :碼出宇宙
掃描添加好友邀你進(jìn)技術(shù)交流群,加我時(shí)注明【姓名+公司(學(xué)校)+職位】